Publications

For an up-to-date listing of my publications, please check INSPIRE-HEP or ADS. Note that some of my papers are signed in alphabetical order, while some others are signed following the astro-ph community convention.

Original Research Papers

  1. K. Moller, P. B. Denton, I. Tamborra, Cosmogenic Neutrinos Through the GRAND Lens Unveil the Nature of Cosmic Accelerators, arXiv: 1809.04866.
  2. L. Walk, I. Tamborra, H.-T. Janka, A. Summa, Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope, Phys. Rev. D 98 (2018) no.12, 123001 [arXiv: 1807.02366].
  3. P. B. Denton and I. Tamborra, Invisible Neutrino Decay Resolves IceCube’s Track and Cascade Tension, Phys. Rev. Lett. 121 (2018) 121802 [arXiv:1805.05950].
  4. K. Moller, A. M. Suliga, I. Tamborra and P. B. Denton, Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background, JCAP 05 (2018) 066 [arXiv:1804.03157].
  5. P. B. Denton and I. Tamborra, The Bright and Choked Gamma-Ray Burst Contribution to the IceCube and ANTARES Low-Energy Excess, JCAP 04 (2018) 058   [arXiv:1802.10098].
  6. M. R. Wu, I. Tamborra, O. Just and H.-T. Janka, Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants, Phys. Rev. D 96 (2017) 123015 [arXiv:1711.00477].
  7. P. B. Denton and I. Tamborra, Exploring the Properties of Choked Gamma-Ray Bursts with IceCube’s High Energy Neutrinos, Astrophys. J. 855 (2018) 37 [arXiv:1711.00470].
  8. I. Tamborra, L. Huedepohl, G. Raffelt and H.-T. Janka, Flavor-dependent neutrino angular distribution in core-collapse supernovae, Astrophys. J.  839 (2017) 132 [arXiv:1702.00060].
  9. M. R. Wu and I. Tamborra, Fast neutrino conversions: Ubiquitous in compact binary merger remnants, Phys. Rev. D 95 (2017) 103007 [arXiv:1701.06580].
  10. P. Mertsch, M. Rameez and I. Tamborra, Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local universe, JCAP 03 (2017) 011 [arXiv:1612.07311].
  11. I. Izaguirre, G. Raffelt and I. Tamborra, Fast Pairwise Conversion of Supernova Neutrinos: Dispersion-Relation Approach, Phys. Rev. Lett. 118 (2017) 2, 021101 [arXiv:1610.01612].
  12. M. R. Feyereisen, I. Tamborra and S. Ando, One-point fluctuation analysis of the high-energy neutrino sky, JCAP 03 (2017) 057 [arXiv:1610.01607].
  13. R. F. Lang, C. McCabe, S. Reichard, M. Selvi and I. Tamborra, Supernova neutrino physics with xenon dark matter detectors: A timely perspective, Phys. Rev. D 94 (2016) 10, 103009 [arXiv:1606.09243].
  14. I. Tamborra and S. Ando, Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos, Phys. Rev. D 93 (2016) 5, 053010 [arXiv: 1512.01559].
  15. S. Ando, I. Tamborra and F. Zandanel, Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin, Phys. Rev. Lett. 115 (2015) 22, 221101 [arXiv: 1509.02444].
  16.  I. Tamborra and S. Ando, Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs, JCAP 1509 (2015) 09, 036 [arXiv: 1504.00107]
  17.  F. Zandanel, I. Tamborra, S. Gabici and S. Ando, High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints, Astron. & Astrophys. 578 (2015)  A32 [arXiv: 1406.2596].
  18.  E. Pllumbi, I. Tamborra, S. Wanajo, H.-T. Janka and L.Huedepohl, Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova, Astrophys. J.  808 (2015) 2,  188 [arXiv: 1406.2596].
  19.   I. Tamborra, G. G. Raffelt, F. Hanke, H.-T. Janka and B. Mueller, Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations, Phys. Rev. D 90 (2014) 045032  [arXiv: 1406.0006].
  20.  I. Tamborra, S. Ando, K. Murase, Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history, JCAP 09 (2014)  043 [arXiv: 1404.1189].
  21.  I. Tamborra, F. Hanke, H.-T. Janka, B.  Mueller, G. G. Raffelt, and A. Marek, Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions, Astrophys. J. 792 (2014) 96  [arXiv: 1402.5418].
  22.  I. Tamborra, F. Hanke, B. Mueller, H.-T. Janka and G. G. Raffelt, Neutrino signature of supernova hydrodynamical instabilities in three dimensions, Phys.  Rev. Lett. 111 (2013) 121104, [arXiv: 1307.7936].
  23.   I. Tamborra, B. Mueller, L. Huedepohl, H.-T. Janka and G. G. Raffelt, High-resolution supernova neutrino spectra represented by a simple fit, Phys. Rev. D 86 (2012) 125031 [arXiv: 1211.3920].
  24.  E. Borriello, S. Chakraborty, A. Mirizzi, P. D. Serpico and  I. Tamborra, Can one observe Earth matter effects with supernova neutrinos?, Phys. Rev. D 86 (2012) 083004, [arXiv: 1207.5049].
  25.  C. Lunardini and I. Tamborra, Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence, JCAP 1207 (2012) 012 [arXiv: 1205.6292].
  26.  S. Hannestad,  I. Tamborra and T. Tram, Thermalisation of light sterile neutrinos in the early universe, JCAP 1207 (2012) 025 [arXiv: 1204.5861].
  27.  S. Sarikas, I. Tamborra, G. G. Raffelt, L. Huedepohl, H.-T. Janka, Supernova neutrino halo and the suppression of self-induced flavor conversion, Phys. Rev. D 85 (2012) 113007 [arXiv: 1204.0971].
  28.   I. Tamborra, G. G. Raffelt, L. Huedepohl, H.-T. Janka, Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, JCAP 1201 (2012) 013  [arXiv: 1110.2104].
  29.  J. Hamann, S. Hannestad, G. G. Raffelt,  I. Tamborra and Y. Y. Y. Wong, Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option, Phys. Rev. Lett. 105 (2010) 181301 [arXiv: 1006.5276].
  30.  G. G. Raffelt and  I. Tamborra, Synchronization vs. decoherence of neutrino oscillations at intermediate densities, Phys. Rev. D 82 (2010) 125004 [arXiv: 1006.0002].
  31.  B. Dasgupta, A. Mirizzi, I. Tamborra, R. Tomas, Neutrino mass hierarchy and three-flavor spectral splits supernova neutrinos, Phys. Rev. D 81 (2010) 093008 [arXiv: 1002.2943].
  32.  B. Dasgupta, G. G. Raffelt, I. Tamborra, Triggering collective oscillations by three-flavor effects, Phys. Rev. D 81 (2010) 073004 [arXiv: 1001.5396].
  33.  G. L. Fogli, E. Lisi, A. Marrone, I. Tamborra, Supernova neutrinos and antineutrinos: spectral split  patterns in a ternary luminosity diagram, JCAP 0910 (2009) 002 [arXiv: 0907.5115].
  34.  G. L. Fogli, E. Lisi, A. Marrone,  I. Tamborra, Three-flavor evolution of supernova neutrino fluxes with dominant collective effects, JCAP 0904 (2009) 030 [arXiv: 0812.3031].
  35.   G. L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, Low energy spectral features of supernova (anti)neutrinos in inverted hierarchy, Phys. Rev. D 78 (2008) 097301 [arXiv: 0808.0807].

Review Papers

  1.  A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Huedepohl and S. Chakraborty, Supernova Neutrinos: Production, Oscillations and Detection, Rivista del Nuovo Cimento Vol. 39 (2016) N. 1-2 [arXiv: 1508.00785].

Book Chapters

  1. I. Tamborra and K. Murase, Neutrinos from Supernovae, Space Sci. Rev. 214 (2018) no.1, 31.

White Papers

  1. K. N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv: 1204.5379.

Research Highlights & Media Coverage (selected)

  1. Possible explanation for excess of electron neutrinos detected by IceCube Neutrino Observatory (Oct. 2018).
  2. Vers une desintegration des neutrinos mu et tau? (Sept. 2018, in French).
  3. Stor Langsom Stjerne (July 2017, in Danish).
  4. A new neutrino-emission asymmetry in forming neutron stars (Oct. 2014).